Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 12, 2026
- 
            Using unmanned aerial vehicles (UAVs) to track multiple individuals simultaneously in their natural environment is a powerful approach for better understanding the collective behavior of primates. Previous studies have demonstrated the feasibility of automating primate behavior classification from video data, but these studies have been carried out in captivity or from ground-based cameras. However, to understand group behavior and the self-organization of a collective, the whole troop needs to be seen at a scale where behavior can be seen in relation to the natural environment in which ecological decisions are made. To tackle this challenge, this study presents a novel dataset for baboon detection, tracking, and behavior recognition from drone videos where troops are observed on-the-move in their natural environment as they move to and from their sleeping sites. Videos were captured from drones at Mpala Research Centre, a research station located in Laikipia County, in central Kenya. The baboon detection dataset was created by manually annotating all baboons in drone videos with bounding boxes. A tiling method was subsequently applied to create a pyramid of images at various scales from the original 5.3K resolution images, resulting in approximately 30K images used for baboon detection. The baboon tracking dataset is derived from the baboon detection dataset, where bounding boxes are consistently assigned the same ID throughout the video. This process resulted in half an hour of dense tracking data. The baboon behavior recognition dataset was generated by converting tracks into mini-scenes, a video subregion centered on each animal. These mini-scenes were annotated with 12 distinct behavior types and one additional category for occlusion, resulting in over 20 hours of data. Benchmark results show mean average precision (mAP) of 92.62% for the YOLOv8-X detection model, multiple object tracking precision (MOTP) of 87.22% for the DeepSORT tracking algorithm, and micro top-1 accuracy of 64.89% for the X3D behavior recognition model. Using deep learning to rapidly and accurately classify wildlife behavior from drone footage facilitates non-invasive data collection on behavior enabling the behavior of a whole group to be systematically and accurately recorded. The dataset can be accessed at https://baboonland.xyz.more » « lessFree, publicly-accessible full text available June 16, 2026
- 
            Drones are becoming increasingly valuable tools in wildlife studies due to their ability to access remote areas and offer high-resolution information with minimal human interference. Their application is, however, causing concern regarding wildlife disturbance. This review synthesizes the existing literature on how animals within terrestrial, aerial, and aquatic environments are impacted by drone disturbance in relation to operational variables, sensory stimulation, species-specific sensitivity, and physiological and behavioral responses. We found that drone altitude, speed, approach distance, and noise levels significantly influence wildlife responses, with some species exhibiting increased vigilance, flight responses, or physiological stress. Environmental context and visual cues are also involved in species detection of drones and disturbance thresholds. Although the short-term response to behavior change has been well documented, long-term consequences of repeated drone exposure remain poorly known. This paper identifies the necessity for continued research into drone–wildlife interactions, with an emphasis on the requirement to minimize disturbance by means of improved flight parameters and technology.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Abstract Drones have become invaluable tools for studying animal behaviour in the wild, enabling researchers to collect aerial video data of group‐living animals. However, manually piloting drones to track animal groups consistently is challenging due to complex factors such as terrain, vegetation, group spread and movement patterns. The variability in manual piloting can result in unusable data for downstream behavioural analysis, making it difficult to collect standardized datasets for studying collective animal behaviour.To address these challenges, we present WildWing, a complete hardware and software open‐source unmanned aerial system (UAS) for autonomously collecting behavioural video data of group‐living animals. The system's main goal is to automate and standardize the collection of high‐quality aerial footage suitable for computer vision‐based behaviour analysis. We provide a novel navigation policy to autonomously track animal groups while maintaining optimal camera angles and distances for behavioural analysis, reducing the inconsistencies inherent in manual piloting.The complete WildWing system costs only $650 and incorporates drone hardware with custom software that integrates ecological knowledge into autonomous navigation decisions. The system produces 4 K resolution video at 30 fps while automatically maintaining appropriate distances and angles for behaviour analysis. We validate the system through field deployments tracking groups of Grevy's zebras, giraffes and Przewalski's horses at The Wilds conservation centre, demonstrating its ability to collect usable behavioural data consistently.By automating the data collection process, WildWing helps ensure consistent, high‐quality video data suitable for computer vision analysis of animal behaviour. This standardization is crucial for developing robust automated behaviour recognition systems to help researchers study and monitor wildlife populations at scale. The open‐source nature of WildWing makes autonomous behavioural data collection more accessible to researchers, enabling wider application of drone‐based behavioural monitoring in conservation and ecological research.more » « lessFree, publicly-accessible full text available March 10, 2026
- 
            Free, publicly-accessible full text available December 4, 2025
- 
            Free, publicly-accessible full text available November 9, 2025
- 
            In this paper, we extend the dataset statistics, model benchmarks, and performance analysis for the recently published KABR dataset, an in situ dataset for ungulate behavior recognition using aerial footage from the Mpala Research Centre in Kenya. The dataset comprises video footage of reticulated giraffes (lat. Giraffa reticulata), Plains zebras (lat. Equus quagga), and Grévy’s zebras (lat. Equus grevyi) captured using a DJI Mavic 2S drone. It includes both spatiotemporal (i.e., mini-scenes) and behavior annotations provided by an expert behavioral ecologist. In total, KABR has more than 10 hours of annotated video. We extend the previous work in four key areas by: (i) providing comprehensive dataset statistics to reveal new insights into the data distribution across behavior classes and species; (ii) extending the set of existing benchmark models to include a new state-of-the-art transformer; (iii) investigating weight initialization strategies and exploring whether pretraining on human action recognition datasets is transferable to in situ animal behavior recognition directly (i.e., zero-shot) or as initialization for end-to-end model training; and (iv) performing a detailed statistical analysis of the performance of these models across species, behavior, and formally defined segments of the long-tailed distribution. The KABR dataset addresses the limitations of previous datasets sourced from controlled environments, offering a more authentic representation of natural animal behaviors. This work marks a significant advancement in the automatic analysis of wildlife behavior, leveraging drone technology to overcome traditional observational challenges and enabling a more nuanced understanding of animal interactions in their natural habitats. The dataset is available at https://kabrdata.xyzmore » « lessFree, publicly-accessible full text available December 21, 2025
- 
            Abstract Drones are increasingly popular for collecting behaviour data of group‐living animals, offering inexpensive and minimally disruptive observation methods. Imagery collected by drones can be rapidly analysed using computer vision techniques to extract information, including behaviour classification, habitat analysis and identification of individual animals. While computer vision techniques can rapidly analyse drone‐collected data, the success of these analyses often depends on careful mission planning that considers downstream computational requirements—a critical factor frequently overlooked in current studies.We present a comprehensive summary of research in the growing AI‐driven animal ecology (ADAE) field, which integrates data collection with automated computational analysis focused on aerial imagery for collective animal behaviour studies. We systematically analyse current methodologies, technical challenges and emerging solutions in this field, from drone mission planning to behavioural inference. We illustrate computer vision pipelines that infer behaviour from drone imagery and present the computer vision tasks used for each step. We map specific computational tasks to their ecological applications, providing a framework for future research design.Our analysis reveals AI‐driven animal ecology studies for collective animal behaviour using drone imagery focus on detection and classification computer vision tasks. While convolutional neural networks (CNNs) remain dominant for detection and classification tasks, newer architectures like transformer‐based models and specialized video analysis networks (e.g. X3D, I3D, SlowFast) designed for temporal pattern recognition are gaining traction for pose estimation and behaviour inference. However, reported model accuracy varies widely by computer vision task, species, habitats and evaluation metrics, complicating meaningful comparisons between studies.Based on current trends, we conclude semi‐autonomous drone missions will be increasingly used to study collective animal behaviour. While manual drone operation remains prevalent, autonomous drone manoeuvrers, powered by edge AI, can scale and standardise collective animal behavioural studies while reducing the risk of disturbance and improving data quality. We propose guidelines for AI‐driven animal ecology drone studies adaptable to various computer vision tasks, species and habitats. This approach aims to collect high‐quality behaviour data while minimising disruption to the ecosystem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available